The nystagmus-associated FRMD7 gene regulates neuronal outgrowth and development.

نویسندگان

  • Joanne Betts-Henderson
  • Stefano Bartesaghi
  • Moira Crosier
  • Susan Lindsay
  • Hai-Lan Chen
  • Paolo Salomoni
  • Irene Gottlob
  • Pierluigi Nicotera
چکیده

Mutations in the gene encoding FERM domain-containing 7 protein (FRMD7) are recognized as an important cause of X-linked idiopathic infantile nystagmus (IIN). However, the precise role of FRMD7 and its involvement in the pathogenesis of IIN are not understood. In the present study, we have explored the role of FRMD7 in neuronal development. Using in situ hybridization and immunohistochemistry, we reveal that FRMD7 expression is spatially and temporally regulated in both the human and mouse brain during embryonic and fetal development. Furthermore, we show that FRMD7 expression is up-regulated upon retinoic acid (RA)-induced differentiation of mouse neuroblastoma NEURO2A cells, suggesting FRMD7 may play a role in this process. Indeed, we demonstrate, for the first time, that knockdown of FRMD7 during neuronal differentiation results in altered neurite development. Taken together, our data suggest that FRMD7 is involved in multiple aspects of neuronal development, and have direct importance to further understanding the pathogenesis of IIN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FERM domain containing protein 7 (FRMD7) upregulates the expression of neuronal cytoskeletal proteins and promotes neurite outgrowth in Neuro-2a cells

PURPOSE Mutations of the FERM domain containing protein 7 gene (FRMD7) are associated with X-linked idiopathic congenital nystagmus. Previous studies have shown that FRMD7 plays an important role in neuronal development and is involved in the regulation of F-actin. However, its specific mechanism of action remains undetermined. METHODS Our study used quantitative real-time PCR to assess the l...

متن کامل

FERM Domain Containing Protein 7 Interacts with the Rho GDP Dissociation Inhibitor and Specifically Activates Rac1 Signaling

The FERM domain containing protein 7 gene (FRMD7) associated with the X-linked disorder idiopathic congenital nystagmus (ICN) is involved in the regulation of neurite elongation during neuronal development. Members of the Rho family of small G-proteins (Rho GTPases) are key regulators of the actin cytoskeleton and are implicated in the control of neuronal morphology. The Rho GDP dissociation in...

متن کامل

A novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus

Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder of eye movement that can be caused by mutations in the FRMD7 gene that encodes a FERM domain protein. FRMD7 is expressed in the brain and knock-down studies suggest it plays a role in neurite extension through modulation of the actin cytoskeleton, yet little is known about its precise molecular function and the effects...

متن کامل

Expression of a novel splice variant of FRMD7 in developing human fetal brains that is upregulated upon the differentiation of NT2 cells

FRMD7 mutations are associated with X-linked idiopathic congenital nystagmus (ICN); however, the underlying mechanisms whereby mutations of FRMD7 lead to ICN remain unclear. In a previous study, the first FRMD7 splice variant (FRMD7-S) was cloned and identified, and FRMD7-S was hypothesized to play a significant role in neuronal differentiation and development. The present study investigated a ...

متن کامل

The clinical and molecular genetic features of idiopathic infantile periodic alternating nystagmus.

Periodic alternating nystagmus consists of involuntary oscillations of the eyes with cyclical changes of nystagmus direction. It can occur during infancy (e.g. idiopathic infantile periodic alternating nystagmus) or later in life. Acquired forms are often associated with cerebellar dysfunction arising due to instability of the optokinetic-vestibular systems. Idiopathic infantile periodic altern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2010